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MARCUM'S AND SWERLING'S DATA ON
TARGET DETECTION BY A PULSED RADAR

Introduction

Marcum has produced (Reference (a))* a definitive

treatment of the statistical problem of target detection by

a pulse radar. His papers have withstood the test of time

since their original publication (1947-48). They have been

republished twice -- most recently by the Institute of Radio

Engineers as a part of a special monograph issue. They are

widely referenced.

However, the text and graphs of Marcum's papers

are presented in terms so highly mathematical that his re-

sults may not appear as useful as they really are. The pur-

pose of this memo is to describe the problem that Marcum

solved and to present graphs of more extensive and more

accurate computed data in a form which may prove more useful

for most applications. Nothing new is added from the statis-

tical viewpoint. Those interested in the mathematical develop-

ment are referred to Reference (a).

* Reference (a) Marcum, J.I. and Swerling, P.; "Studies of

Target Detection by Pulsed Radar"; IRE Transactions Volume
IT-6, No. 2 dtd April 1960. (Also published as Rand Re-
search Memo RM 754 by J.I.Marcum dtd 1 Dec 1947; Rand Memo
RM 753 by J.I.Marcum dtd 1 July 1948; and Rand Memo RM 1217
by P.Swerling dtd 17 March 1954.
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Swerling's paper in Reference (a) extends Marcum's

results to the case of a radar target with an echo of fluctu-

ating strength. Swerling's analytic results have been used

in this memo to extend the numerical data beyond that given

in Reference (a). The results of these computations are pre-

sented below.

The Noise Proble2

A pulse radar set is an ejectronic device which can

alternately radiate and receive electromagnetic energy.

Limitations are placed on the bandpass of the receiver and

also on the time of reception so that any received energy is

suspected of being an echo of the radiated energy. The re-

ceiver is deafgned to measure the smallest energy possible

to minimize the transmitted energy. As these receivers be-

come more and more sensitive, their measurements become influ-

enced by energy which before had been unnoticed in the back-

ground.

Until recently, background discrimination was done

principally by people who observed a display attributable to

the received energy and thermal noise generated internally.

Through the use of very subtle target detection criteria and

integration laws, (that are not well understood) trained ob-

servers are very effective in detecting targets in the presence

of background noise. Marcum's results, in theory, apply at

least partially to target detection by people. For applicable

numerical results, it would be necessary to interpret their

detection criteria in terms of a signal-to-noise ratio; and

also to know the observer's integration law.

Marcum's results apply directly to the performance

of an automatic detection system which is based on signal-to-

noise ratio. In an automatic sysbern, energy received as noise

simultaneously with an echo cannot be rejected on the basis ofi
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frequency without rejecting the echo. This is because noise

contains all the frequencies of interest superimposed in

random phase. This superposition accounts for the large and

random fluctuations in the amplitude of the noise signal,

The ratio of signal energy to noise energy is of
fundamental concern in attempting to make radar detections.

When signal energy is measured over the same time interval

as noise energy, the energy ratio is identical to the power

ratio. Since the times are usually the same, equations below
will be written in terms of power. It should be remembered,

however, that in the general case the time interval for measur-

ing signal and noise energy might not be the same and due

account of this fact must then be taken.

The power, Pc' of the target echo, which we would

like to measure is:
P It G t( G-• )R 'A21

where Fe is the power of the echo at the input to the

.receiver

P t is the power transmitted

Gt is the gain of the transmitting antenna

P is the scattering cross section of the target

GR is the gain of the receiving antenna

7ý is the carrier wave length

L is a factor to account for two-way losses due to

such causes as propagation through the medium,

antenna, beam shape and plkmbing, and

R is the range to the target.

i ih'
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The first term of equation (1) in parenthesis describes the

radial distribution of power density from the transmitting

(illuminating) antenna. The second term accounts for the

power reradiated from the target. The third defines the frac-

-tion of the reradiated power captured by the receiving antenna.

The product of these terms defines a mean echo power that would

be measured were it not fcr the large fluctuations in noise

power. Consequently, what is needed is a criterion for decid-

ing whether the measured power indicates the presence of a

target or not. A very useful decision criterion is used in

statistics called the Neyman-Pearson Observer. This criterion

requires a fixed value of signal-to-noise ratio (i.e. threshold)

for comparison to the signal-to-noise ratio being measured.

If the measured value is larger than the threshold, a target is

reported. Noise will, at times, cause reports of targets when

no targets are present. Some detections will. be missed be-

cause noise happens to be low during the echo. If false alarms

prove bothersome, either the threshold value of signal-to-noise

ratio must be increased at the expense of missed detections or

more radiated power; or more sophisticated decision criteria

mIust be instrumented. This latter alternative is outside the

scope of the present paper.

The problem of target detection by continuous-wave

radar can be treated in the same way if the observed sample of

the continuous return from the target is interpreted as a pulse.

False Alarm Number

Marcum defined the complex relationship between a

threshold value of signal-to-noise ratio and the probability

that values in excess of the threshold will exist in the
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presence of both noise and echoes. These excesses will be

reported as target detections and as mentioned above, will

include both false and real veports of targets.

The prob-zem starts with noise. Suppose that the

voltage due to noise alone varies with time like this:

CA -A A -

A /ASi v

During the period *hown the noise would have exceeded thres-

hold voltage level A 7 times, level B 5 times and level C

only twice. Obviously, the higher the threshold, the longer

will be the average time between occasions when noise alone

exceeds the threshold. This time is of considerable concern

because If too short, we v.ill be faced with too frequent false

alarms; and if too long, excessive radiated energy will be

required to achieve. reasonable probabilities of target detec-

tion. To get a mathematical handle on this time, it is

defined as follows: the fal•.e alarm time is the time during

which the probability is F that there will not be a false

alarm. For purposes of standarization, P0 is taken to be 0.5.

PN is the probability that a false alarm is obtained

each time there is an opportunity. The false alarm number,

n/, is the number of independent opportunities for a false

alarm in the false alarm time. Then as standardized

S(1 - 0.5 (Marcum eq. i0)* (2)

*These references are to equations in RM-755 of Reference (a)
but theyare not necessarily quoted verbatum.



Tho Johns Hokilln Jvf riI•e -V 6 -

APPLIED PHYSICS LAS0MATOMY
Silve. Sprir., Maryland

where P is the probability of no false alarm during

the false alarm time

P N is the probability of a false alarm on each

opportunity, and

n' is the false alarm number.

When the number of opportun.ities for a false alarm, i.e.,

the false alarm number, is very large, an approximation to

equation (2) gives accurate values of the probability of a

false alarm, namely,

PN n-loge 100 (Marcum eq. 21) (3)
0

The values of false-alarm probability in Table I apply when

PO 0  0.5.

TABIE I

PROBABILITY OF A FALSE ALURM IN THE
ABSENCE OF TARGET ECHOES

False Alarm Number, n' False Alarm Probability, PN

102 6.93 x 10-3

103 6.93 x 10-4

iO6 6.93 x lO-7

108 6.93 x 10-9

1010 6.93 x 1o-lI

The choise of false alarm number associated with a

particular radar depends on the function it performs. Search

radars usually are designed to have very large false alarm

numbers, e.g., 10 , to minimize the time wasted in reacting to

false detections. On the other hand, track radars can use

Il
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small false alarm numbers because the tracking antenna is

not unduly distracted by an occasional false detection during
acquisitIon of the target; and, during tracking, the distrac-

tion is completely negligible.

The number of opportunities for a false alarm may
be calculated in terms of the pulse repetition frequency (FRF),

the number of range gates per range sweep, and the method of

signal processing. Common processing techniques are the co-

herent and incoherent integration of pulses; coherency refers
to the preservation of phase in the pulse-summing process.

Range gates are switches that open and close at specified times
so that a target echo, if any, can be admitted from a predeter-

mined element of space, refr-cred to as a cell.

Since a decision must be made each time a gate Is
open, whether a target is present or not, noise pulses that

enter can be interpreted as a target if their sum is strong
enough. The number of pulses actually processed per unit time
is the number of rar •e gates per sweep muiltiplied by the pulse
repetition frequency. If, prior to the decision, m pulses are
integrated coherently, and then N of the resulting signals are
integrated incoherently, the opportunities for a false alarmn
are redliced proportionally at the expense of reducing the nu',ber
of cells that may be searched per unit time.

The false alarm number is related to the false alarm

time as follows:

t mNn" (4)F (PRF)G

where tF is the fýlse alarm time

m is the number of pulses integrated coherently

N is the number of signals integrated incoherently, arid

G is the number of range gates per range sweep.

za NR.
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Bias Level

The probability, PN' that noise alone will exceed

a given bias level of voltage is obviously a function of the

bias level. The nature of the function depends on the com-

bined law of the detector and integrator and the characteris-

tics of the noise. The detector referred to here is the

envelope detector, the output of which is a given function

of the envelope of the carrier wave. This function is called

the law of the detector. The integrator affects the statistical

problem in the same way as the detector. The function of

the signal voltage which is integrated is called the law of

the integrator, e.g. the square of the pulse voltage rmight

be integrated over N pulses. So long as the same weight is

applied to each of the N pulses the integrator is called

linear, e.g., we could have a linear square-law integrator.

The solutions for the bias level which are obtained

are for the combined law of the detector and integrator.

The sclution obtained most easily is for a combined square

law which is usually thought of as a square-law detector

coupled with a linear Linear-law integrator.

The bias level for the combined square law case,

and for the assumed normal distribution of noise voltage, is

given by:

1

f.1.N- -Y a

PnT:e dX7 (Marcum eq. 39) (5)
.0 

10

and N
Y z y (Marcum eq. 26) (6)

t.l.
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where Yb is the bias level normalized to root mean

square noise, and

y is the output of the detector normalized to

root mean square noise. _J

The relationships among Yb' N and n' are shown in Figure 1

for Pc 0.5. Mean square noise is defined as

- w (f) df (Marcum eq. 5) (7)

00where *0 is mean square noise 4<.

w(f)is the power spectral density of the noise output of the

receiver (assumed to be a linear filter with gain), and

f is the frequency.

Target Detection

A functional block diagram of an automatic pulse

radar may be drawn as follows:

DplexerH Rane H oh eret L Detecot orL Inc oherent he

S qCuare NoiseI -Leve ' '

The coherent integrator adds pulses either. at carrier frequency

or at some intermediate frequency. The output is fed to the

envlope detector and also to a device to obtain and take the

square root. The value obtained for 0o must not be unduly in-

fluenced by echoes. This value is multiplied by a factor, Yb'

N I-P-•.'
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to obtain the bias level. The integrated output of the de-

tector is compared to the bias level in the threshold device.

If the integrated detector output is larger, the alarm is

sounded indicating the probable presence of a target. Marcum's

analysis applies to only that part of the functional block

diagram downstream of the coherent integrator. If m pulses

are integrated coherently, Marcum's data apply to - of the
m

transmitted pulses, each of which has m times the energy of

a single transmitted pulse.

The probability of detection, i.e. the probability

of sounding the alarm in the presence of signal and noise, is

given by:
y N-1

P - b 1 IY e I (2[NxY]1/2 dY (8)

N A N-1(

0

(Marcum eq. 49)

where x is the signal to noise power ratio (later x = S),

and

I is the modified Bessel function of the first

kind.

Since the relationships have been established among the bias

level, Yb' the false alarm number, n', and the number of pulses integrated

N, by equation (5), the probability of detection can now be

related to n' and N through equation (8). These relationships

are shown in Figures 2 through 11.

Range Equation

As mentioned above in connection with equation (1),

the signal-to-noise power ratio is available by observing

signals and noise over the same period of time. Since Marcum

shows the probability of detection as a function of the signal- I
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to-noise power ratio (equation (8)), all the parameters of

interest to the formulation of the range equation are avail-

able in consistent units. Noise power from anavoidable sources

such as thermal, shot and galactic noise is usually normalized

to thermal noise power.

The range equation can now be written. It

expresses, among other things, the relationship between the

range and the probability that a detection will be made each

time the range is sampled. These detections will include

false alarms.
A 2

m Pt Gt GR - LR=: (9)
R (4r)3 [KT F] S (N, n', PN)

where R is the range

m is the number of pulses integrated coherently
A
P t is the peak power in relation to the average

transmitted power of the radar (actually the

average power of each transmitted pulse )
Gt is the gain of the transmitting antenna

G R is the gain of the receiving antenna

is the wave length of the carrier wave

a is the scattering cross section of the target

L is the product of loss factors, e.g. due to

medium, plumbing, beam shape, etc.

K is Boltzmann's constant for thermal noise energy

= 1.38 x 10-23 joules/degree Kelvin

T is the absolute "room" temperature (IRE standard is 2900 K)

is the receiver bandpass

F is the noise figure of the receiver I-

N is the number of pulses integrated incoherently
n' is the false alarm number Py)

PN is the probability of detection for N pulses

integrated incoherently, and

L•
-, il

L:&&<<S&XW'
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S is the signal to noise power ratio (given as x

by Marcum as a function of N, n, and P N~

The numerator of equation (9) divided by (4r)3 R

expresses the summed power of m reflected pulses measured at

the input to the receiver. The term in brackets in the denomi-

natbr expresses the noise power due to the usual source, i.e.

the noise of the receiver referred to thermal noise. If other

sources of noise are present, such as noise Jammers, their

power as measured at the input to the receiver must be added

to the term in brackets.

Collapsing Loss
The function S(N, n', PN)' which is shown in Figures

2 through ll,has been computed for conditions under which the

radar set integrates the same number of noise pulses as signal

pulses. If more noise pulses are integrated than signal

pulses, a greater signal-to-noise ratio is associated with

any given poobability of detection than is given by S(N, ni, PN).

Marcum defines a collapsing ratio as:

M + N (Marcum eq. 226) (10)S= N

where p is the collapsing rabio, and

M is the additional number of noise pulses inte-

grated.

The term "collapsing" stems from an association of this ratio

with the superposition, or "collapsing", of data on a radar

scope. A collapsing loss is also defined:
S1

Lc • (Marcum eq. 232) (11)
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where Lc is the collapsing loss factor
S Is the signal to noise ratio for M = 0, and

S1 is the signal to noise ratio for M > 0.

In cases where collapsing loss applies, the denominator of

equation (9) is multiplied by Lc. Note that in so doing,

S(N, n', PN) is merely changed to Sl(M, N, n', PN + M)'

Values of SI(MN,n" PN + M) can be found from

S(N, n PN through the use of p. First find the bias level

from Figure 1 using pN for the parameter N noted on the

Figure. Then find a value for S for the desired probability

of detection using pN for N in Figures 2 through IL Multiply

this value of S by p to obtain SI* This value of S1 can then

be used directly in equation (9) for S or used indirectly

through equation (11). Symbolically,

Sl(M, N, n', PN + M= pS (pN, n'., P') (12)

when PN + M - PN.

Marcum's Other Results

Results which Marcum derived for the square law

of the comoined detector and integrator have emerged as the

standard for radar calculations. This is partly because the

square law permilts the easiest solution of the statistical

problem and parTly because changing the law doesn't make much

difference. However, this is not Marcum's only result.

Linear Law - Marcum made a limited number of cal-

culations for a combined linear law. A comparison with the

square law results show that the differences are very small.

For example, at a detection probability of 0.5, the required

signal-to-noise ratio is the same for both laws for N 1 and

.rI
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N = 70. For N = 10, the square law requires about 1.3%

more power ratio than the linear law. For N very large, the

linear law approaches a requirement of about 2.2% mor'e signal-

to-noise ratio than the square law. These results are ample

justification for preferring the more easily obtained square

law data.

Signal Plus Noise Minus Noise - Marcum obtained

results for systems which integrate composite pulses formed

by subtracting one noise pulse from each signal-plus-noise

pulse. Quoting his own analysis of the results, "There

appears to be no significant difference in the probabilities

of detection for N between 1 and 10. For N between 100 and

1000, the composite case gives an effective signal to noise

ratio about 1 db lower than the ordinary case". An advantage

of this scheme is that substantially lower bias levels pertain

when N is large.

Alternate Detection Criteria - Another method of

deteztion is based on the probability of signal-plus-noise

exceeding noise alone over a period of time. This time is

taken to be the false alarm time. Marcum obtained limited

numerical results for this criterion. He points out that this

criterion is not useful for search because of the difficulty

of picking out the largest signal over a period of time and

because of the difficulty of what to do when many signals are

present. However, this criterion is useful for determining

the probability that an automatic tracking beam will lose its

target due to noise. See (Marcum eq. 185).

Another detection criterion is based on the shift

in average value of a distribution of signal plus noise from

that of noise alone divided by the standard deviation of

noise alone. This is called the deflection criterion. Marcum

%



Th* Johns Hopkins Un•l'." -i 16 -

APPLIED PHYIGS LABORATORY
nsi n, MAryland

shows that this criterion makes detection a function of N

whereas the bias level criterion takes advantage of making

detection a function of N raised to powers from 1 to about

0.75 depending on the size of N. Thus, the deflection criterion

is not preferable. ,.rcum uses the deflection criterion,

however, for a special proof that the square law for the detector-

integrator is the best possible law for sufficiently small

signal-to-noise ratios (Marcum eq. 225).

Best Possible Detector Law - Marcum proves

rigorously that there is a best possible detector law for

each signal strength (Marcum eq. 217). For small signals the

best possible law closely approximates the square law. For

large signals, it is the linear law. However, the numerical

results for these extreme cases are not very different, so that

if faced with a choice, there is not much reason to prefer

one to the other on the basis of' detection probability. However,

the linear law has one practical advantage in that a linear

detector would be less subject to saturation by large signals.

Antenna Beam Shape Loss - Marcum points out the

obvious fact that in the static case, one should use the antenna

gain which is associated with the target's position in the

beam pattern. However, in the scanning case the target!s

position moves through the beam pattern causing different gains

to apply each time the range is sampled. The question arises

as to how long the echo pulses can be integrated while the

beam i.: on the target. Marcum states, as the result of his

analysis, that ntegration should be carried out to about 1.1

times the half-power beamwidth, practically independent of the

range and the number of pulses per half-power beamwidth. If

this is done, the average loss factor referred to the ideal

case of constant gain is about o.84 (i.e. 1.5 db). This result

case I - 1? , W ' nW~rvxwu% of (P~e 1.5 n r-lt
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does not apply wnen scanning is so fast that only one target

hit is achieved per beamwidth. For cases where fast scanning re-

sults in successive echo pulses having different signal

strengths Marcum indicates the statistical solutior but does

not work it out.

Limiting Loss - Through calculations which were

not reproduced in Reference (a), Marcum concluded that for N

large, the loss due to limiting in the receiver is only a

fraction of a db if the limiting ratio is as large as 2 or 3.

The limiting ratioit defV_.ed as the ratio of the limiting level

to the root mean square noise level. If only I or 2 pulses

are integrated the ratio must be as high as 10 to prevent a

serious loss. Integrator limiting can also cause a loss but

Marcum says that this loss is small compared to the limiting

of the individual pulses.

Fluctaating Target

Swerling extended Marcum's square law results

to four different cases in which targets return echoes of

fluctuating strength. Cases 1 and 2 apply to targets which

can be represented as a number of independently fluctuating

reflectors of about equal echoing area. Such is said to be

the case for objects which are large compared to a wave length

and shaped not too much like a sphere. It is -laimed that

observed data on aircraft targets agree with the density dis-

tribution assumed for cases 1 and 2. This distribution Is

xX
w (x, i) i e x x 0 (13)

x

where x is the average signal to noise ratio over

all target fluctuations.

Cases 3 and 4 apply to targets which can be
represented as one large reflector together with a number of
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small reflecto-s; or as one large reflector subject to small

changes in orientation. The assumed density distribution is:

2x
- (,• 4x R

w -- 2! e ;x 2! 0 (14)
x

Cases 1 and 3 apply when echo fluctuations occur

from scan to scan. During a scan the echo strength is assumed

constant. Cases 2 and 4 apply when fluctuations occur from

pulse to pulse. Swerling's formulas are as follows:

CASE I -

For N =1:

S~-Yb

P1 - (15)

For N > 1:

Yb

PN -- I-Q [N•2---. dY

0 Yb
1+-1

-Yb NX

+ i+i N-1 lNe-YYN -2(_,

(+ L) e e +Ni dY (16)
NRf

0
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CASE 2-

For any N:

N 1- 7Y NTI)T Y(1

0

CASE 3-

For N =1:

For N =2:

P'2 +- +19



F'or N > 2:

y1

1 - N 2 .Y.)W 
E Ni

pY e T 3TdY dY1

0 .

Yb yi

1+-

N-1iY 
NR

1 + 21 + N E -Y yN -2

+ I N 2 Ie 
--T e , dY dY1

+ NR

0- 0

N e Y N 1 d Y (2 0 )

J N5E12J
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CASE 4 -

For any N;
Yb

k e-Yy2N-l-kN!

1k N- j Y2K -dY (21)

Sk=O 0

For N = 1, this equation reduces to Equation (18).

Swerling did not give the exact expression for PN for

Case 4. Equation (21) was derived by Ronald Roll from the

characteristic function for Case 4 given in Reference (a).

The relationships among PN' 5, N and n' expressed

by Equation (5) and Equations (15) through (21) are shown in

Figures 12 through 49. Symbolically,

i= S2 (N, n', PN) (22)

and values of S2 are used in Equation (9) in place of S1 when

the detection range of fluctuating targets is desired.

Concluding Remarks

Detection probability, PN' is related to the bias

level, Y , through integrals, the values of which are very

sensitive to small changes in the limits of integration,

especially for large N. To obtain numerical values of PN as

a function of n', the number of significant figures required
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for Yb must be compatible with the sensitivity of the functions

to be integrated. Accordingly, the biaE. level, Yb' was found

from Equation (5) using the numerical methods described in the

Appendix and double precision arithmetic on the IBM 7090 com-

puter. Various values of n' between 10 and 1010 were used and

P0 was taken to be 0.5.

The values of Yb thus determined were used as the

upper limit of integration in Equation (8) and in Equations (15)

through (21). The number of pulses integrated, N, was varied

from 1 to 3000. The signal-to-noise ratio x or R, was varied

over sufficient range to define a graph for a range of PN

between approximately 0.001 and 0.999. Values of PN were obtained

by numerical methods described in the Appendix.

The signficant figures which can be read from Figures .

through 49 are sufficient for most purposes. However, if more

significance is required for any particular problem, the tab-

ulated data will be kept on file in BPD. These data are exact

to six significant digits. A comparison with the data pre-

sented in Reference (a) indicates that the accuracy of Mtrcum's

data for non-fluctuating targets is at least as good as the

accuracy of reading his graphs. Swerling's data for all cases,

however, are substantially in error for large N, the number of

pulses integrated. The exact data indicate lower probabilities

of detection for the same signal-to-noise ratio.

Leo F. Fehlner

LFF: ls
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APPENDIX A

Methods for Digital Machine Computation
of Detection Probability by R. G. Roll and G. T. Trotter

Swerling expressed the detection probability, PN' for

case 1 In terms of two incomplete gamma functions and for case 2

in terms of only one. Marcum's expression of the bias level,

Yb1 is also a single incomplete gamma function. Numerical

values of PN for cases 1 and 2 and of Yb can be computed from

these expressions as given. To facilitate the evaluation of

incomplete gamma functions, a recursion relation has been used

to express them as series which can be computed to any pre-

cision, given enough time.

The best method of computing Swerling's cases 3 and 4

and Marcum's case (which we will call case 0) is not obvious

through inspection of the expressions as they gave them. There-

fore, the probability distribution functions were rederived from

the characteristic functions to produce series which can be

computed to any precision. These series, and the method of

programming them for digital computation, are given below.

Incomplete Gamma Function

The incomplete gamma functions are of the form:

a
reu up

f(a,p) •J -p du (A-la)

0

f du (A-lb)

a

.. . . .. 
...



AIPUE PHYSICS LABOOMY 21• , 4 I, *= , t 4 P I v - 2 -' 4 -
Appendix A

Integration by parts yield:.

a

Se-u UP [ e-U u P-1
f(a,p) ] +f f (-1 du (A-2)

0

which is a recursion relation expressible as:

p P-a ak

f(a,p) = 2. - k (A-3a)

€•o-a ak
e a(A-3b)

k=p+l

If a > p, Equation (A-3a) converges faster and is therefore

preferable for computation. If a < p, Equation (A-3b) is

preferable.

Non-fluctuating Target - Case 0

The characteristic function for case 0 as given by

Marcum is:

Nx

Se-Nx ep+CN (P) (A + -)(P + 1)N A4

The density function is obtained by contour integration.

+JCi

Nx
)-Nx ep+ e (P+l-1)t

)= e(p + )Ndp , (A-5a) ki4•
f~t =7(P -I1
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- e-Nx e-t ep+-l et(p+l)27r 2i I (p + I)N dp(A-5b)
IGO

e-k tN- l+k

=e k (N 1 k+ ' (A-5c)

The probability distribution function is given by:

Yb C

P N (Yb) = 1 - 4 f(t) dt = r f(t) dt (A-6)
Yb

N-l+k

P -NxGo (xke-y (7a

PN (x, Yb)= e Z E k.b (A-7a) -
k-=O j=O

e-Nx VO Nk e Yb (--r=I--e (A-7b)

IZO J=N+k

If Yb > N (x + 1), Equation (A-7a) should converge faster and
is therefore preferable for computation. The maximum term is
identified by that value of k that makes:

(Nx)k 
Yb Nklk

T=2 (N - 1 + k)

a maximum. The summation is then carried out around this point.
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If Yb < N (x + 1), Equation (A-7b) is preferable. The maximum

term is identified by the value of k that makes:

(xk YbN+k

k! (N + 'UT

a maximum and the summation is carried out around this point.

Fluctuating Target - Case 3
For case 3, the characteristic function, as given by

Swerling, is:

0N (p) = (A-8)

(I + )N-2 [+ ± + "+

Let c = 1 (A-9)
NR

The density function may be obtained from

+i-

ePt
f(t) e2 dp (A-10)(i +p)N-2 (+ 1 p)

By contour integration, we obtain

P
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f~t) (N-) c2e- ct +c2 t -ct

f~t) i-c)N-3

+ c 2 e- k+1 N k +(A-11)

k=O

The probability distribution function is given by:

N-2

(b N-1 e-b C e- Zb

1 +.

N-2 _Yb(lc)

+ CY b - N-2 c + y -I_ e [Yb (j-cJ

(A-12)

The summations are Incomplete gamma functions which can be

evaluated as shown in Equations (A-35).

Fluctuating Target - Case 4
For' case 4, the characteristic function as given by

Swerling is:

PN
CN(P) ( p)(A-i))

(1 x ]2N 4
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Let

c - (A-14)

then
2N + N

- £LLL~*(A-15)
CN(P) = (c + p)

The density function is obtained from

1 r pt 2N N
f(t) = c (J + p) dp (A-16)

(c + p)2N-im

By contour integration we obtain

2N-1

f(t) = e -ct c2N N N-k t2N - 1 - (A17)k! (NXk) (2 )(A1) •

k= 0

The probability distribution function is:
N 2N-1-k _cyb

Pm N N1 e (cyb) - (A-18a)PN(c" Yb) = N k! (N '- -C-' J'

N

(N N-k 
O e-CY b (cYb

1- C k-(N- k - . j (A-18b)

k=O J=2N-k"
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If Yb > N (2 - c), Equation (A-18a) is preferable for computa-

tion. The maximum term is identified with that value of k

that makes

2N-l-k

N( 1 0  N-k (cYb)k2 N k' (2N - I k)!

a maximum. The summation is then carried out around this point.

If Yb < N (2 - c), Equation (A-18b) is preferable. The maximum

term is identified by that value of k that makes

2N-k

"N! 'Nk (cYb)77M - k)(2N - r7

a maximum. The summation is then carried out around this point.

Computational Proolems,

The extremely large and extremely small numbers encountered

in the computations mentioned above led to some interesting com-

puter programming problems. The IBM 7090 computer, which was

used for these computations can normally handle numbers in

the range 10-o38 < II < 1038, with about eight digits of signi-

ficance. In several instances it was necessary to employ
devious means of handling numbers outside this range, or numbers
requiring a higher degree of significance.

First, consider the formula for Yb in terms of N and n':

Y
N-1 eU

f(y) n' i du, (A-19)

0
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with P0  0.5 and Y =Y" This equation was reduced to a

differential equation of the form:

f = (Y) yN-i e-Y
Tff= -- T , (A-20)

YO

f = f(Yo) f- uN-1 du (A-21)

0
where Y is an initial approximation to Yb read to about two

significant digits from Marcum's curves. This differential

equation was integrated by Heun's method:

f +1= fJ + h [f'(YJ) + i)(y]" = 0, 1, 2, ... , (A-22)

where Y + 1 Y + h. h was set arbitrarily to 0.01 when

fYo) < f(Yb) or -0.01 when f(Yo) > f(Yb). The iteration was.

carried out up to j ; k, such that f(Yk) : f(Yb). Then Yb = Yk"

Note, for example, that 0.51/108 and 0.51/10 are

identical to eight significant digits. Thus, double precision

arithmetic, a programming technique which extends significance

to about 16 digits, was used for the Heun integration; the

YbS Ithus determined are accurate to at least seven significant

digits.

In the above procedure, as well as in the computation

of the detection probabilities, it is often necessary to ev~1-

uate the expression

E(a,p) = ep u UP (A-23)

L P 2
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If p is 3000, say, and u is 'of that order of magnitude, then

numbers such as e-3000 ,300033000 3000!, which are well outside

the limitations of the computer, come into play. This problem

may be handled by evaluating
p

in E = -u + p in u (in 1). (A-24)
i=i

Then,
E =en E (A-25)

Note that E is always less than one, and is generally large

enough so that in E is easily handled.

To evaluate the incomplete gamma function, one first

computes the maximum term in this logarithmic fashion, and

then sums about that point to the desired degree of signifi-

cance. Each successive term is computed as the product of

the preceding term and the appropriate ratio.

Similar techniques are used in the computation of

the detection probabilities. For example, in case 4, the

maximum term is computed thus:

N

in Tmax k in c + (N -k) in (I - c) + (in i)

k N-k

- Z (in i) - (in i) + in 7I (cYb,2N-l-k) (A-26)

Tmax n Temax (A-27)

The sum is then carried out about this point, as with the

Incomplete gamma function.

UWun 111Fouu WU IVWWWI N'JM MU .WW W.J 1FUMFI U% . M V '. L s f 'EWU %rW WjAru WUi l KV sm WWW WUMWWd ff..m v
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The error incurred-by truncating the series for the

incomplete gamma function is estimated as follows. Equation
(A-3a), which is used when a > p can be written:

f(a,p) = 1- p + + + . A-28

In the above expression the first K terms of the bracketted
sum are used. The criteria for determining K Is that the

K + 1 term is less than 10-8 times the sum of the first K
terms. The remainder of the terms are dropped.

The sum, R, of the remaining terms is:

SpP(P- 1)(p -2),... (p- K)]

p- -1 +.p - K - 1)(p- K- a) +a a2 2.. (P.- 4  )'] (A-•9)

S+ a a 2+axI

The coefficient of this expression is by definition less than
10-8 imes the computed sum, C, therefore

R < 10-8C [1 + p-K-1 + (p -K-IXp-K-2) + .. -1] (A-30)aa2 a J

The ratio of the remainder to the computed value is then
bounded by the following:

~m~hE..mmnaE~aL4uwjh~mma~h ~ l&PMrin~ !



ARM OW 110U3 33 -

Appendix A

0 < R < [0 a p + (A-31)

If a < p the value of f(a,p) is computed from Equation (A-3b)
by a similar method. For this case, the ratio of the remainder
to the computed value may be bounded by the expression:

0< <10-8 p + K + (A-32)

An estimate of a lower bound on K for a-> p may be
obtained from:

r 1/2

K -i- + 1inn a - p l (A-33)

for a < p
1/2

K I- . + in + - in - p in (10-8 (A-34)

Substitution of limiting values of a and p in expres-
sions A-31 and A-32 indicates that the truncation error influ-
ences only slightly the value of the seventh significant

decimal digit.

The value of K associated with the sums of the series
is large when N is large. Since the computed value is the
sum of only positive numbers and since truncated arithmetic
was used, the computed value is biased to the low side of the
true value. An estimate of the size of the computer truncation

MT.flT.WJ•U
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error indicates that the sixth significant decimal digit would
not be affected in the worst case. The computed data are

correct t%-herefore to at least six significant decimal digits.

bN
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